
JIT Python pour calcul haute performance
B. Gailleton – 22/03/2025 Café Calcul

HPCPython

Pourquoi Taichi Lang ?

Programmer
pour

calcul GPU

Low-level
Pros: control fin, performances

Cons: Temps de développement, niveau d'entrée haut

Cœur en C/C++/assimilé

High-level
Pros: Bon ratio performance/temps de développement

Cons: Pas de flexibilité, peu de controle mémoire, pas de noyaux

Très orienté IA
Calcul vectorisable/broadcasting
Python/julia/...

Pourquoi Taichi Lang ?

Intégré dans l'écosystème python

Compilateur JIT python pour
calcul massivement parallèle

Custom kernels (e.g. comme CUDA)

Un seul code pour toutes les backends

Advanced data structure
(matrices creuses, structures)

Phase de développement 2018-2023
Depuis 2023 phase de maintiens
Soutenu par grosse entreprise d'IA
(meshy AI)

https://www.taichi-lang.org/

Points vendeurs principaux

Quickstart Installation:

1) Importer taichi

2) Initialiser la backend

3) Initialiser les données: paramètre/constants et
arrays de donnée

4) écriture du (des) noyau(x) - kernel de calcul en
python "restreint"

5) Execution flow en python classic

Quickstart: la Benchmark rapide

Temps pour
1000

itérations
(s)

Temps d’exécution
x 10 - 100

CPU Backend GPU

ti.init(...) : choix de la backend

Option par défault (ti.gpu, ti.cpu, None)

Option précise (ti.vulkan, ti.cuda, ti.metal, ti.opengl, ...)

I: integer – u: unsigned integer – f: floating point – XX nombre de bits

Backend "full": cpu et Cuda
Backend "OK for most": vulkan
Backend "OK for the basics": Metal, opengl

Les fonctions et noyaux I : fonctionnement

@ti.kernel : noyau de calcul que l'on appelle depuis python
@ti.func : fonction automatiquement inline que l'on appelle dans les noyaux

Arguments: les arguments doivent être typés
- Scalaire: ti.i8/32/64/...
- Générique: ti.template()

Interopérabilité avec ti.ndarray

Boucle(s) externe(s) parallèlisé:
for i, ... in field:
Boucle "manuelle"

Boucle génériques

Les fonctions et noyaux II : librairie et fonctions disponible

ti.math :
- toutes les fonctions classiques (sin, cos, … min, max, …, norm, grad, ...)
- https://docs.taichi-lang.org/api/master/taichi/math/
- mat2 = ti.math.mat2

vec3 = ti.math.mat3
vec4 = ti.math.vec4 ...

ti.atomic_…:
- ti.atomic_add(x, y)
- ti.atomic_sub(x, y)
- ti.atomic_and(x, y)
- ti.atomic_or(x, y)
- ti.atomic_xor(x, y)
- ti.atomic_max(x, y)
- ti.atomic_min(x, y)

- Structure: return la vielle valeur, modify x in place
- Limitation : pas de atomic_CAS
- +=, &=, … sont considéré atomiques

Pour les backends CPU et CUDA:
- Solver de matrice creuses/système linéaires
- https://docs.taichi-lang.org/docs/master/linear_solver

La donnée I : les scalaires

Constantes ou scalaire cotés host:
- Scalaire basiques (int, float, bool, string)
- Si global : la valeure est fixée au temps de compilation

Scalaires coté device :
- scal = ti.field(ti.f32,shape = ())
- Modification (kernel ou host): scal[None] = 42.

Les GPUs sont (de `manière générale) memory-bound et non compute-bound

La donnée II : les fields à N dimensions

Field classiques (numpy-like):
- Array à N dimensions (jusqu'à 8)
- Remplissage unique fill, copy_from (à partir

d'un autre field), from_numpy ou kernel

Field vecteurs ou matriciels :
- Même principe
- Mais type de donnée lui-même multiple:

o ti.Vector.field(n=2, dtype=float, shape=(N, N))
o ti.Matrix.field(n=2, m=3, dtype=ti.f32, shape=(N, N))

- Dans un kernel: vec[i,j][k]

Struct field :
- particle_field = ti.Struct.field({

"pos": ti.math.vec3,
"vel": ti.math.vec3,
"diffusion": ti.f32,
"label": ti.u8,
"active": ti.u1, # bool

}, shape=(N,N))
- Dans un kernel, plusieurs appels :

o particules[i,j].pos
o particules.pos[i,j]
o particules.pos.from_numpy(my_positions)

La donnée III : Layout avancés

Placer les ressources manuellement :
a) Déclaration de variables par types

x = ti.field(ti.i64)
b) Placement or type d'indexage:

o ti.i, ti.j, ti.k, …
o ti.ij, ti.ijk, ti.ikl, …

c) Chaine de déclaration puis placement:
o ti.root.dense(...).place(x)

exemple 2 : Strucure of Arrays (SoA) vs Arrays of Structures (AoS)

exemple 1 : row major vs column major

Temps d'éxécution
x 1.5-3

La donnée IV : données creuses et éparses Au delà de ti.root.dense -> block coalescent

Temps d'éxécution
x 3-20

.pointer (0 noeud actif = pas de données en mémoire) .bitmask (noeud actif = iteration, else: skip)

La donnée V : Extra

Seulement avec ti.cuda et ti.cpu

Temps d'éxécution
x 1.5-8

1) Possibilité d'activer et désactiver "manuellement" les noeuds des ti.root.pointer ou des ti.root.bitmask
pour un controle maximal. cela demande un travail rigoureux (0 automatisation)

2) Champs dynamic (comme une liste python: append possible) avec ti.root.dynamic(ti.i, size_max, size_chunk)

4) Quantized data type
https://docs.taichi-lang.org/docs/master/quant

u5 = ti.types.quant.int(bits=5, signed=False)

fixed_type_a = ti.types.quant.fixed(bits=10,
max_value=20.0)

3) Dataclass et orienté objet 5-30% overhead

Seulement avec ti.cuda et ti.cpu

Benchmarking and profiling
Classique via les outils python : à deux détails

Warmup = 1er lancement compile la fonction

ti.sync() = force l'attente de la fin des kernel
(non automatique tant que les données ne sont pas demandé cotés python)

Via les outils taichi :

Pour info: Backend cuda compatible avec CUPTI

Control flow à partir de python : classique, mais pièges à éviter

Minimiser les copy CPUs :

Lent et
couteux

OK

Redéfinition != deallocation
OK

Memory
leak

Favoriser les constantes lorsque possible

Taichi pour un logiciel/libraire de recherche complet : quelques conseils/limites
https://github.com/TopoToolbox/pyfastflow

Compile-time évaluation avec ti.static(): Gestion de la mémoire manuelle possible:

Attention à l'overhead du JIT sur des gros projets
- Vite amorti pour des taches > 5s
- Couteux pour les taches "uniques" et courtes
- Reset total buggy (e.g. en cas de constantes)

Taichi pour la visualisation graphique/scientifique

Visualisation très performante
- Rendu full GPU
- Interface via imgui (légér)
- Steep learning curve

Contexte en géomorphologie B. Gailleton
Géomorphologue
Postdoc à Géosciences Rennes
bgailleton.github.io

300 m 300 m

LiDAR-DTM (1m)SRTM (30 m)

Volume de données
x1800

MNT = matrice 2D d’altitude à partir desquels nous quantifions des processus
climatiques/tectoniques

Application en géosciences I : simuler les écoulements d’eau

Défis numérique en géomorphologie quantitative :

• Simuler des écoulements d’eau sur des grandes
échelles spatio-temporelle

f(pente, hauteur d’eau)

Incrément d’eau dans le temps
Temps CPU : ~30-50 minutes

Problème parfaitement parallélisable

Application en géosciences : portage naïf

Accélération vs
CPU
x 40

1 frame = 2000 itérations

Application en géosciences : résolution stationnaire

Accélération vs
stationnaire

x4
Et surtout linéarisation

1 frame = 10 itérations

Application en géosciences : accumulation non local

Barnes et al., 2019

Jain et al., 2024

Accumulation par niveaux

Taichi plus lent que CPU
Cuda C++ 8-15 fois plus rapide
que CPU (kernel persistent)

Accumulation par saut de pointeur

Taichi 5-12 fois plus rapide que CPU

Somme de préfix sur un graphe acyclique = beaucoup de race conditions

Take home message

https://www.taichi-lang.org/ https://docs.taichi-lang.org/docs/hello_world https://github.com/TopoToolbox/pyfastflow
Site principal Documentation (très complète) Un exemple de logiciel (un peu de pub)

Data structure
- automatique ou avancé
- Données creuses/sparse

gérées nativementJIT pour python massivement parallele

Custom Kernels
- flexibilité de Cuda
- écrit en python

Full stack
- visualisation
- simulation
- portable

B. Gailleton - bgailleton.github.io – boris.gailleton@univ-rennes.fr – Café Calcul 22/01/2026

mailto:boris.gailleton@univ-rennes.fr
mailto:boris.gailleton@univ-rennes.fr
mailto:boris.gailleton@univ-rennes.fr

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

