JIT Python pour calcul haute performance
B. Gailleton - 22/03/2025 Café Calcul

(] (] [] 9
POlII'quOI Taichi Lang ‘ Pros: control fin, performances

L ow-level

Pl =
OpenCE Quikan. N 1 Coeur en C/C++/assimile
A

Programmer

nour .
calcul GPU @: Taichi Lang

Pros: Bon ratio performance/temps de développement
High-level

‘M izw O PyTorch Tres orienté |A
| it TensorFlow Calcul vectorisable/broadcasting

Python/julia/...

Pourquoi Taichi Lang ?
Points vendeurs principaux

o . Custom kernels (e.g. comme CUDA)
€. Taichi Lang g
Advanced data structure
Compilateur JIT python pour (matrices creuses, structures)

calcul massivement parallele
Integreé dans lecosysteme python

Phase de développement 2018-2023 .)) n
Depuis 2023 phase de maintiens pip install taichi

Soutenu par grosse entreprise d'lA
(meshy Al)

Un seul code pour toutes les backends

https://www.taichi-lang.org/

Yuanming Hu

Ethan #A{MNRE 1
Ph.D., MIT EECS ‘ <ANVIDIA. \ ("\
Founder & CEO, Meshy Al CU DA VUIi(anM

Quickstart Installation: pip install taichi

1) Importer taichi

2) Initialiser la backend

3) Initialiser les données: parametre/constants et
arrays de donnée

4) écriture du (des) noyau(x) - kernel de calcul en
python "restreint”

5) Execution flow en python classic

Quickstart: la Benchmark rapide

Y (m)

, o N iterations

10.
174
15.
17.
20.

X (m)

10

= 1000
=16
9.8
I = 101 -
-0.6 5 Temps pour -
- © 1000 10°¢
[o itérations =
-0.4 _
] s B 10 1‘;

) .

-0.2

—————— LL@.0

15 20

O

e
cpu_ 1

o o
L L
cpu_8 vulkan cuda
cpu Backend cpu

Temps d’exécution
x10-100

ti.init(...) : choix de la backend

Option par défault (ti.gpu, ti.cpu, None)

Option précise (ti.vulkan, ti.cuda, ti.metal, ti.openg|, ...)

|: integer - u: unsigned integer - f: floating point - XX nombre de bits

Backend | i8 | i16 | 132 | i64 ul | u8 ul6 | u32 | uea | fie | 32 fes
CPU v | v |V |V |V |V |V |V |V |V |V |V
CUDA v |V |V |V |V |V |V |V |V |V |V |V
OpenGL | X | X |V |O |V [X [X (X | X | X |V |V
Metal v iv [V | X |V |V |V [V [X | X |V | X
Vukan | O |O |V |O |v |O O v |O |V |V | O
©: Requiring extensions for the backend.

Backend "full": cpu et Cuda
Backend "0K for most™ vulkan
Backend "OK for the basics": Metal, openg|

Les fonctions et noyaux | : fonctionnement Boucle(s) externe(s) parallelisé:
for i, ... in field:

@ti.func
def check boundary(i:ti.i32, j:ti.i32, N:ti.i32): BOL“je'Tnanue”e"
check = True
if 1 =0 or i == N-1 or j == 0 or j == N-1: .
check = False @tl. kernel
return check
def loop 2d():
@ti.kernel) .. .
def iterate(x:ti:template(), new x:ti.template(), for 1,] 1n 1:1.ndr*ange(2, 5):
Nabiedld2, dx:ti.f32, dt:ti.f32, alpha:ti.f32): X))
for i, j in x: print(i, J)

Boundary conditions

if check boundary(i,j,N): L.
new x[i, j] = 0.0 Boucle generiques
else: -
Finite difference Laplacian @tl-kern31

laplacian = (x[i-1, j1 + x[i+1, j] + x[i, j-11 + x[i, j+11 - 4.0 * x[i, jI) / (dx**2)
new x[i, jl = x[1, j] + alpha * dt * laplacian

@ti.kernel : noyau de calcul que l'on appelle depuis python
@ti.func : fonction automatiquement inline que l'on appelle dans les noyaux

def test(arr: ti.types.ndarray()):
for I in ti.grouped(arr):
arr[I] += 2

Arguments: les arguments doivent étre typés
- Scalaire: ti.i8/32/64/ ...
- Générique: ti.template()

Interopérabilité avec ti.ndarray @ti.kernel
B def foo(A: ti.types.ndarray(dtype=ti.f32, ndim=2)):
O PyTorch
= EYIRHE N NumPy do_something()

Les fonctions et noyaux Il : librairie et fonctions disponible

ti.math:
- toutes les fonctions classiques (sin, cos, ... min, max, ..., norm, grad, ...)
- https://docs.taichi-lang.org/api/master/taichi/math/

mat2 = ti.math.mat2
vec3 = ti.math.mat3
vecd = ti.math.vecd ...
ti.atomic_...:
- ti.atomic_add(x, y) Pour les backends CPU et CUDA:
- ti.atomic_sub(x, y) - Solver de matrice creuses/systeme linéaires
- ti.atomic_and(x, y) - https://dacs.taichi-lang.org/docs/master/linear_solver

- ti.atomic_or(x, y)

- ti.atomic_xor{x, y)
- ti.atomic_max(x, y)
- ti.atomic_min(x, y)

- Structure: return la vielle valeur, modify x in place

A

La donnée | : les scalaires

A Les GPUs sont (de ‘maniére générale) memory-bound et non compute-bound

Simulation Parameters

N = 512
dx = 0.01 # Explicit spatial step
alpha = 1.0 # Thermal diffusivity

dt = (dx**2) / (4 * alpha) * 0.9 # Stability limit (CFL condition)

Constantes ou scalaire cotés host: Scalaires coté device:
- Scalaire basiques (int, float, bool, string) - scal = ti.field(ti.f32,shape = ())
- A Siglobal : la valeure est fixée au temps de compilation - Modification (kernel ou host): scal[None] = 42.

La donnee Il : les fields a N dimensions

x = ti.field(dtype=ti.f32, shape=(N, N))

new x = ti.field(dtype=ti.f32, shape=(N, N))

X.from numpy(initial T) # initial T est une array numpy 2D
new x.Till(0.)

Field classiques (numpy-like): Struct field :
- Array a N dimensions (jusqu'a 8) - particle_field = ti.Struct.field({
- Remplissage unique fill, copy_from (a partir "pos’: ti.math.vecd,
d'un autre field), from_numpy ou kernel "vel": ti.math.vecs,
"diffusion": ti.f32,
"label": ti.u8,
Field vecteurs ou matriciels : "active™ ti.ul, # bool
- Méme principe }, shape=(N,N))
- Mais type de donnée lui-méme multiple: - Dansun kernel, plusieurs appels :
o ti.Vector.field(n=2, dtype=float, shape=(N, N)) o particules(ij].pos
o ti.Matrix.field(n=2, m=3, dtype=ti.f32, shape=(N, N)) o particules.posli,j]

- Dans un kernel: vec[i,j] k] o particules.pos.from_numpy(my_positions)

La donnee lll : Layout avances

ti.root.dense(ti.ij, (3, 4)).place(x) ti.root.dense(ti.i, 3).dense(ti.j, 4).place(x)

ti.root .

. ti.root

(ti.ij, (3, 4)

/

N\

--- SETUP SOA ---

pos soa = ti.field(ti.f32)

vel soa = ti.field(ti.f32)
ti.root.dense(ti.i, N).place(pos soa)
ti.root.dense(ti.i, N).place(vel soa)

--- SETUP AOS ---

pos aos = ti.field(ti.f32)

vel aos = ti.field(ti.f32)

ti.root.dense(ti.i, N).place(pos _aos, vel aos)

(ti.i, 3)

(ti.j, 4)

Placer les ressources manuellement :
a) Déclaration de variables par types
x = ti.field(ti.i64)
b) Placement or type d'indexage:
o tii tij, tik ...
o ti.ij, ti.ijk, ti.ikl, ...
¢) Chaine de déclaration puis placement:
o ti.root.densel(...).place(x)

exemple 1: row major vs column major

X
y

ti.field(ti.f32)
ti.field(ti.f32)
ti.root.dense(ti.i, M).dense(ti.j, N).place(x)
ti.root.dense(ti.j, N).dense(ti.i, M).place(y)

row-major
column-major

exemple 2 : Strucure of Arrays (SoA) vs Arrays of Structures (AoS)

Conceptual Layout

Physical Memory Layout

Array-of-Structs

BAOanOanaantancanaanag ano
Struct-of-Arrays
S nnnooonjonnnnnnnoonannso

La donnée IV : données creuses et eparses Au del3 de ti.root.dense -> block coalescent

L = & = & & = & & & & & & & & A & & A & & & & A & A 4 & A & & A & & & & & & & & & & & & & & & & 2 & &
DENSE LAYOUT
Advection-Diffusion on Sparse Ring e e e
—— dense val = ti.field(dtype=ti.f32, shape=(N, N))
Max: 1.000 dense val new = ti.field(dtype=ti.f32, shape=(N, N))
-8
L = & = & & = & & & & & & A & & & & A & & &4 & A & A & & & & & A & & & & & & & & & & & & & 2 & & 2 & &
d # SPARSE LAYOUT (pointer -> bitmasked)
L = & = & & = & & & & & & A & & & & A & & &4 & A & A & & & & & A & & & & & & & & & & & & & 2 & & 2 & &
E sparse val = ti.field(dtype=ti.f32)
sparse val new = ti.field({dtype=ti.f32)
Ls
g block = ti.root.pointer(ti.ii, (N // BLOCK_SIZE, N // BLOCK_SIZE))
1o pixel = block.bitmasked(ti.ij, (BLOCK SIZE, BLOCK SIZE})
#® pixel.place(sparse val, sparse val new)
3
2 .pointer (0 noeud actif = pas de données en mémaoire) .bitmask (noeud actif = iteration, else: skip)
Lq [0 0] [0 1] [0 2] [0 3] [0,0] [0,1] |[0,2] [0,3] [0, 4] [0,5] [0,6] [0,7]

(1,0 [1,1] [1,2] [1,3] [1,4] [15] [16] [1,7]
[2,0] (2,1] [2,2] [2,3] [24] [2,5] [26] [2,7]
(1,0] (L1 [L,2] [1,3]

3,00 [3,1] [3,2] [3,3] [3.4] [35] [36] [37]

[4,0] [4,1] [[4,2] [4,3] [4.4] [45] [46] [4,7]

2,00 [21] [22] 23]

[5,0] [51] [52] [53] I[54] [55] [56] [57]

[6,0] [6,1] [62] [6,3] [6 4] [65] I[66] [67]

Temps d'éxécution 3,00 [3,1 [2 [33]
x 3-20

[7,01 [7,1] [7,2] [7,3] [7,4] [7,5] [7,6] [7,7]

La donnée V : Extra

1) Possibilité d'activer et désactiver "manuellement” les noeuds des ti.root.pointer ou des ti.root.bitmask
pour un controle maximal. A cela demande un travail rigoureux (0 automatisation) A Seulement avec ti.cuda et ti.cpu

2) Champs dynamic (comme une liste python: append possible) avec ti.root.dynamici(ti.i, size_max, size_chunk)
3) Dataclass et orienté objet A 5-30% overhead

4) Quantized datatype A\ Seulement avec ti.cuda et ti.cpu
https://docs.taichi-lang.org/docs/master/quant

sign exponent: 8 bits fraction: 23 bits

IEEE 754

N N | u5 = ti.types.quant.int(bits=5, signed=False)
et (TTTTTTT L TTTTTTTTTTTTTTTT Rsiiedsvuingnd i

max_value=20.0)

shared exp: 6 bits v, fractions 8 bits v, fractions: 8 bits v, fractions: 8 bits 2 bits

Temps d'éxécution
10 i1 0o oo oo 1 o1 010101010101 010 x].5-8

Benchmarking and profiling

Classique via les outils python : A a deux détails

def benchmark(fn, name, warmup=WARMUP, runs=RUNS):
for in range(warmup):
_tnl) Warmup = Ter lancement compile la fonction
ti.sync()
start = time.perf counter()
for in range(runs):

fn()
ti.sync() ti.sync() = force l'attente de la fin des kernel

elapsed = time.perf counter() - start . . , ,
return (elapsed / runs) * 1008 (non automatique tant que les données ne sont pas demandé cotés python)

Kernel Profiler{count, default) @ CUDA on WVIDIA RTX 3508 Ada Generation Laptop GPU

. . . . ga 1
Via les outils taichi : S el ot omn e e dremetmn
[34.85% 0.023 s 300x | 0.046 0.076 ©.239 ms] k fma c86 ® kernel O range for
ti.init(arch=ti.gpu, kernel profiler=True) [34.25% 0.023 s 300x% | 0.062 0.075 0.243 ms] k add c82 0 kernel © range for
= [14.78% 0.010 s 300x% | 9.0831 9.0832 ©.191 ms] k saxpy c84 8 kernel © range for
[18.41% ©0.0087 s 200x% | 0.0834 0.0834 0.841 ms] k stencil c88 8 kernel @ range for
[3.80% 0.002 s 100x | 9.023 0.024 9.829 ms] k reduce sum c99 0 kernel 1 range for
[1.06% ©.001 s 200x | 0.003 0.003 0.008 ms] k stencil c88 0 kernel 1 serial
5 5 : : : [B.54% ©.000 s 100x | B.003 0.004 8.811 ms] k reduce sum c98 8 kernel 2 serial
ti.profiler.print_kernel _profiler_info() [0.52% 0.000 s 100x | ©.003 0.003 0.013 ms] k_reduce sum c90 © kernel @ serial
[100.00%] Total execution time: ©.066 s number of results: 8

Pour info: Backend cuda compatible avec CUPTI

Control flow a partir de python : classique, mais pieges a éviter

Minimiser les copy CPUs : Redéfinition != deallocation

for i in range(N steps): 0K a = ti.field(ti.f32, shape = (512,256))

mon kernell(a,b,cC)

mon kernel2(a,b,c) for i in range(N steps):
data = a.to numpy() a = ti.field(ti.f32, shape = (512,256))

for 1 in range(N steps):

mon kernell(a,b,c) Favoriser les constantes lorsque possible

@ti.kernel
mon_kernel2(a,b,c) def run 1(a:ti.template(), K:ti.f32, dt:ti.f32):
. . 0K for i in a:
1T 1 % 100 == 0: a[il = dt/K * a[i]
#
... K et dt constant
data =.a-t0_numPY() @ti.kernel
ou ti.sync() def run_1l(a:ti.template()):

for 1 in a:
a[i] = dt/K * a[1i]

Taichi pour un logiciel/libraire de recherche complet : quelques conseils/limites
https://github.com/TopoToolbox/pyfastflow

Compile-time évaluation avec ti.static(): Gestion de la mémoire manuelle possible:
@ti.kernel fbl = ti.FieldsBuilder()
def ;un%(a:ti-template()% X = ti.field(dtype=ti.f32)
or 1 1n a.: . .
if check boundary(i) == False: fbl'dense(tl'lj’ (5, 5)).p1ace(xﬂ
o fbl snode tree = fbl.finalize()
a[i] = dt/K * a[i] # ... simulation

fbl snode tree.destroy() # Destruction
def check boundary(i:ti.i32):
res = False
if ti.static(GLOBAL.BOUNDARY MODE == 0):
res = normal boundary(1i)
elif ti.static(GLOBAL.BOUNDARY MODE == 1):

res = periodic boundary (i) Attention a I'overhead du JIT sur des gros projets
res = custom boundary(1i) .. .
return res - Couteux pour les taches "uniques” et courtes

... after setting globals : - Reset total buggy (e.g. en cas de constantes)

check boundary = ti.func(check boundary)

Taichi pour la visualisation graphique/scientifique

Visualisation trés performante
- Rendu full GPU

- Interface via imqui (légeér)

- Steep learning curve

Contexte en géomorphologie B. Gailleton

Géomorphologue
Postdoc a Géosciences Rennes
bgailleton.github.io

SRTM (30 m) LiDAR-DTM (1m)

Volume de donnees
x1800

MNT = matrice 2D d'altitude a partir desquels nous quantifions des processus
climatiques/tectoniques

Application en géosciences | : simuler les écoulements d'eau

Defis numérique en geomorphologie quantitative :

* Simuler des écoulements d'eau sur des grandes
echelles spatio-temporelle

Raster grid

C){h{ +2)

q; — gh, At="~

q — Ox ’
o (1 +ghIAtn2qt/h:°-’3)

f(pente, hauteur d'eau)

A

Increment d'eau dans le temps
Temps CPU : ~30-50 minutes

O Node

Probleme parfaitement parallélisable

Application en géosciences : portage naif

2
2 - -
o) | 8
: -1.0
'|'| - L
e - : N
; R Accélération vs
: :-0.5 = -
Z : :‘E x 40
. . s = 0.0

1619.5 1620.0
Easting (km)

1 frame = 2000 itérations

Application en géosciences : résolution stationnaire

-2.0
£ [].5
o [
= -1.0
=l -

-)

T

s Bl
=

1620.0
Easting (km)

—
16195

1frame =10 itérations

Hauteur eau (m)

Accélération vs
stationnaire
xk
Et surtout linéarisation

S

Application en géosciences : accumulation non local

Somme de prefix sur un graphe acyclique = beaucoup de race conditions

Barnesetal., 2019 ‘ 1

Accumulation par niveaux

Taichi plus lent que CPU
Cuda C++ 8-15 fois plus rapide
que CPU (kernel persistent)

Initial discharge gy Iteration 1 & Iteration 2 & Iteration 3 €D Finaldischarge '
(precipitation) L 4 . ~ 4

Q;@ﬂoo 0@9@0 099 @" QQQQQ 0@@) °
0 9060 900 906 O©00

Jain et al., 2024

o

Accumulation par saut de pointeur

Taichi 5-12 fois plus rapide que CPU

Take home message B. Gailleton - bgailleton.github.io - horis.qailleton@univ-rennes. r - Café Caleul 22/01/2026

5301.2 4 _'Z-UA53@1 pa :-Z.OA
£ 5301.0- ~1.5™ 5301.0- B
— - L
) 3 =
| @
D 5300. 8 - ~1.9 ¥ 5300.8- =
- - o L o
P 5300.6- - D 5300.6- -0
s . :_ 0] 5 .l;) __ 0 . 5 -ls
= 5300.4- ~ 8 5300.4- -
T —— L 0.0 L -0.0
1619.5 1620.0 1619.5 1620.0
Easting (km) Easting (km)
Site principal Documentation (trés compléte) Un exemple de logiciel (un peu de pub)
https://www.taichi-lang.org/ https://docs.taichi-lang.org/docs/hello_world https://github.com/TopoToolbox/pyfastflow
. . Custom Kernels Data structure Full stack
‘ To I C h I Lo n - flexibilité de Cuda - automatique ou avancé - visualisation
g - écrit en python - Données creuses/sparse - simulation

JIT pour python massivement parallele gerées nativement - portable

mailto:boris.gailleton@univ-rennes.fr
mailto:boris.gailleton@univ-rennes.fr
mailto:boris.gailleton@univ-rennes.fr

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

